Data from the book "Introduction to Biomechanical Engineering (in Japanese)": published by Corona Publishing Co., Ltd. Tokyo, Japan.

Author: Shigehiro Hashimoto Kogakuin University,
Department of Mechanical Engineering,
Biomedical Engineering shashimoto@cc.kogakuin.ac.jp
© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.1: Spring

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.2: Mode of deformation

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.3: Orientation of cells and matrices
 Longitudinal direction of cell

Orientation of cells

Orientation of extracellular matrices

(Endothelium)

Longitudinal direction of extracellular matrix

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.4: Direction of forces at tube wall

Longitudinal

Tangential

Fig. 3.5: Transmission of force

(A)

Slip at attachment part

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.6: Fixation

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.7: Origin

Force

Deformation
© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.8: Stress

Normal stress

Surface

Shear stress

Fig. 3.9: Poisson's ratio

Fig. 3.10: Strains in tension

Fig. 3.11: Strain gauge

Strain gauge

Wire thick \& short

Fig. 3.12: Stress-strain diagram

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.13: True stress

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.14: Balance of forces in hemisphere

$$
\begin{aligned}
& \Delta P \pi r^{2}=2 \pi r \gamma \\
& \Delta P=2 \gamma / r
\end{aligned}
$$

(3.10)
(3.11)

Equation of Young-Laplace

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.15: Tensile force at membrane of erythrocyte

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.16: Bending

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.17: Simple \& rigid support

(a) Simple support

(b) One side rigid support Rigid support

Fig. 3.18 Three-point bending test (a)

Fig. 3.19: Four-point bending test

(a)

(b) $\boldsymbol{F} \uparrow$

Shearing force diagram
(c)

Bending moment diagram
© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.20: Center line and strain

Moment of inertia: $I z$

$$
\begin{equation*}
I z=\int y^{2} d A \tag{3.15}
\end{equation*}
$$

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.21: Yield and fracture

Stress

Strain

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.22: Repetitive load

(a) Extension

Stress Amplitude
$0 \xrightarrow[\text { Time }]{\text { Period }}$
(b) Compression
(c) Extension \& Compression

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.23 Fracture surface

Striation

Dimple

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.24: Stress amplitude vs. number of cycles

Stress amplitude

Number of cycles

Fig. 3.25: Erythrocyte fatigue in flow

Shear stress

Hemolysis ratio < 0.01

(Shear rate) $\times($ Exposure time)

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.26: Erythrocyte destruction

0.01 mm

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.27: Close-packed lattice

Facecentered cubic lattice

ABCABC

c \bigcirc

Close-packed hexagonal lattice

ABABAB

Fig. 3.28: Surface

Interaction
 \longleftrightarrow

Surface

Inside
© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.29: Poly-crystal

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.30: Lattice defect

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.31: Stress concentration

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.32(a): Orientation of endothelial cells

Flow

0.1 mm

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.32(b): Orientation of C2C12

0.1 mm

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.33: Electrodes

© Shigehiro Hashimoto 2013, Published by Corona Publishing Co., Ltd. Tokyo, Japan

Fig. 3.34: Force applied on laryngoscope

Fig. 3.35: Phantom

(a) Copper sulfate aqueous solution

> (b) MRI (magnetic resonance image)

Fig. 3.36: Penetration of phenol-red into agar

Q. 3.3 Fig. 3.37: Face-centered cubic unit lattice

