Fig. 4.1: Pressure and stress

Fig. 4.3: Continuity

Density Compressibility Incompressible fluid Law of conservation of mass

Fig. 4.4: Expression of Bernoulli

$(1/2)\rho v^2 + p = \text{constant}$ (4.2)

Fig. 4.5: Head drop

Gravitational acceleration: g

Fig. 4.7: Principle of siphon

Fig. 4.8: Collapse

(a) Vein collapse (b) Blood removal cannula

Fig. 4.10: Shear rate

Fig. 4.11: Newtonian fluid

Fig. 4.12: Viscosity with temperature

Fig. 4.14: Rouleau formation

Fig. 4.15: Viscosity tracings with vibrating electrode

Fixed electrode

Fig. 4.16: Measurement of local viscosity with vibrating electrode

Fixed electrode

Fig. 4.19: Circulation resistance

Fig. 4.20: Velocity distribution in pipe

(a) Plug flow

(b) Hagen-Poiseuille flow

Fig. 4.21: Force balance in cylinder in flow

Fig. 4.22: Cylinders of fluid in flow through pipe

Fig. 4.23: Distribution of velocity

Fig. 4.25: Boundary layer

Fig. 4.27: Flow between rotating cone and stationary plate

 $\gamma = v \neq d = r \omega \neq (r \theta) = \omega \neq \theta \qquad (4.40)$

Fig. 4.28: Cone-plate viscometer **S** Rotation Torque Viscosity **Rotating cone Couette flow** Fluid **Stationary plate**

Fig. 4.29: Clotting between rotating cone and stationary plate

(a) Blood between rotating (b) Torque tracings during cone and stationary plate clot formation

Fig. 4.29: Clot formation between rotating cone and stationary plate

(c) Clot; cone (left), plate (right)

$$\gamma = 430 \text{ s}^{-1}$$
 Shear rate
 $Rc = 0.45$ Clotting ratio

 4.3 s^{-1} Rc = 0.90

Fig. 4.29: Clot formation between rotating cone and stationary plate (d) Shear rate γ and Clotting ratio *Rc*

Fig. 4.30(a): Counter rotating rheoscope

Fig. 4.30(b): Counter rotating rheoscope

Fig. 4.31(a): Velocity distribution in flow between parallel walls

Fig. 4.31(b): Force balance in flow between parallel walls

Fig. 4.32: Deformation and exfoliation of cell in flow (1)

(2) Deformation

(3) Exfoliation

0.2 mm

Fig. 4.33: Flow channel between parallel walls

Fig. 4.34: Flow channel system with parallel wall for microscopic observation

Flow channel

Syringe pump

Fig. 4.35: Extension of cell

Fig. 4.36: Movement, deformation, proliferation, orientation, and differentiation of cell

Differentiation

Fig. 4.37: Falling sphere

Fig. 4.39: Axis concentration?

Wall

Erythrocytes

Fig. 4.40: Secondary flow in bend tube

Fig. 4.41: Secondary flow between cylinder (Taylor vortex)

Fig. 4.42: Secondary flow between rotating cone and stationary plate

Fig. 4.43: Flow between rotating outer cylinder and stationary inner cylinder

Stationary inner cylinder

Fig. 4.44: Flow between stationary convex cone and rotating concave cone

(a) (b) Concave and convex cones

Fig. 4.45: Pressure in pulsatile flow

Fig. 4.47: Clot formation and hemolysis with shear rate

Fig. 4.48: Tracing

(a) Laminar flow

(b) Turbulent flow

 $Re = \rho v x / \eta$

(4.64)

Fig. 4.49: Streamline

number

(b) High Reynolds number

Fig. 4.51: Artificial ventricle

(c)

(b)

Fig. 4.52: Clot in artificial ventricle

Valve

Valve

